15x^2+25x-25=0

Simple and best practice solution for 15x^2+25x-25=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15x^2+25x-25=0 equation:


Simplifying
15x2 + 25x + -25 = 0

Reorder the terms:
-25 + 25x + 15x2 = 0

Solving
-25 + 25x + 15x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '5'.
5(-5 + 5x + 3x2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(-5 + 5x + 3x2)' equal to zero and attempt to solve: Simplifying -5 + 5x + 3x2 = 0 Solving -5 + 5x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.666666667 + 1.666666667x + x2 = 0 Move the constant term to the right: Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667x + 1.666666667 + x2 = 0 + 1.666666667 Reorder the terms: -1.666666667 + 1.666666667 + 1.666666667x + x2 = 0 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + 1.666666667x + x2 = 0 + 1.666666667 1.666666667x + x2 = 0 + 1.666666667 Combine like terms: 0 + 1.666666667 = 1.666666667 1.666666667x + x2 = 1.666666667 The x term is 1.666666667x. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667x + 0.6944444447 + x2 = 1.666666667 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667x + x2 = 1.666666667 + 0.6944444447 Combine like terms: 1.666666667 + 0.6944444447 = 2.3611111117 0.6944444447 + 1.666666667x + x2 = 2.3611111117 Factor a perfect square on the left side: (x + 0.8333333335)(x + 0.8333333335) = 2.3611111117 Calculate the square root of the right side: 1.536590743 Break this problem into two subproblems by setting (x + 0.8333333335) equal to 1.536590743 and -1.536590743.

Subproblem 1

x + 0.8333333335 = 1.536590743 Simplifying x + 0.8333333335 = 1.536590743 Reorder the terms: 0.8333333335 + x = 1.536590743 Solving 0.8333333335 + x = 1.536590743 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 1.536590743 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 1.536590743 + -0.8333333335 x = 1.536590743 + -0.8333333335 Combine like terms: 1.536590743 + -0.8333333335 = 0.7032574095 x = 0.7032574095 Simplifying x = 0.7032574095

Subproblem 2

x + 0.8333333335 = -1.536590743 Simplifying x + 0.8333333335 = -1.536590743 Reorder the terms: 0.8333333335 + x = -1.536590743 Solving 0.8333333335 + x = -1.536590743 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -1.536590743 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -1.536590743 + -0.8333333335 x = -1.536590743 + -0.8333333335 Combine like terms: -1.536590743 + -0.8333333335 = -2.3699240765 x = -2.3699240765 Simplifying x = -2.3699240765

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.7032574095, -2.3699240765}

Solution

x = {0.7032574095, -2.3699240765}

See similar equations:

| 14=-4(4n-4.5) | | 5-2x=8x+9 | | 10p+9-11-p=-2(p+4)-3(2p-2) | | (2x+4)(2x+4)=36 | | x^2*3x-5=175 | | 4x+4=-6x-5 | | 20p-4-12p+5q+2q= | | 108-20+4x= | | y+16=225 | | 3(3X+2)=29 | | x^4-4x^2+7=0 | | 4x+8=3x+2 | | 14y-98+18y=4y-30 | | 1.4+8.4+7=20 | | -12b-7+5b=2 | | 3(2x-6)=2(4x-12) | | 5(2v+3)-7v=21 | | 3(3y-4)=-2(3y-9) | | 3=4(x+2) | | -4x-3-9x=10 | | -2(5-4x)=14 | | 5(x-9)=-2 | | 72h+(120+78h)=894 | | 4(3x-5)=4 | | 5a-3(a-5)= | | (h-1)(h+5)=0 | | 2(s-18)=5 | | 7x-2=7(x-4) | | -5(4x+8)=13 | | 12n+36=36+12n | | 1.1x^2-0.88x=0.528 | | 20y^2+5y=9 |

Equations solver categories